服务咨询电话

0535-4702955

大数据有哪些经典的应用案例?

2020-05-07 03:37
 

网上澳门游戏网址 电网语义精准搜索引擎系统是针对大数据垂直搜索需求的全文智能检索引擎,融合了自然语言理解、网络搜索和文本挖掘的技术,通过人机互动、深度机器学习后具有一定的语义推理能

  电网语义精准搜索引擎系统是针对大数据垂直搜索需求的全文智能检索引擎,融合了自然语言理解、网络搜索和文本挖掘的技术,通过人机互动、深度机器学习后具有一定的语义推理能力,是结合了人工智能技术的新一代搜索引擎。

  在搜索框输入你要查询的问题,搜索引擎通过人机互动、自然语言理解,对你输入的内容进行语义分析,读懂你的问题,提炼出问题主体,对搜索结果进行去重并推送精准结果。

  搜索引擎在语义深度理解的基础上,并从数据库中通过深度语义算法算出与主题相关的信息,去除冗余、提取扼要信息,从而推送给客户一段精准的答案;此结果体现了传统搜索引擎为你“寻找”转变为为你“回答”的智能化搜索升级。

  语义精准搜索引擎系统主要满足知识搜索、电网报、统计分析、语义技术、语义本体五大功能模块。以下介绍具体功能:

  搜索引擎给出语义深度理解的功能外,还兼具图书文献类知识管理搜索功能,搜索框输入你要查询的关键词,搜索引擎通过人机互动、自然语言理解,对你输入的内容进行相关图书文献搜索,对搜索结果进行去重并推送精准结果。如搜索“智能电网”,直接展示出与关键词“智能电网”有关的文献和图书,目前系统内已经收录了数千部文献和图书,可以充分的满足搜索需求。如,搜索“智能电网”后的展现结果:

  同时可以显示文献和图书进行相关性聚类分析,如下图红框中,可点击进行相关术语或相关作者的文献及图书的搜索,如图3所示:

  通过对搜索结果进行分析,对相关文献进行知识分类分析,建立起如图的关系,主节点为分类号,标准的分类体系,而每个节点下面为其相关的关键词,再通过其关键词建立起了类别的关系,有效的组织了知识的结构。

  在搜索框输入你要查询的关键词或问题,搜索引擎通过人机互动、自然语言理解,对你输入的内容进行语义分析,读懂你的关键词或问题,提炼出主体,对搜索结果进行去重并推送精准结果。

  搜索引擎经过机器对自然语言的理解直接分析出你询问对象的主体是“刘振*”然后搜索挖掘出精准答案推送给你。搜索结果如图5所示

  搜索结果在线主题聚类是基于相似性算法的自动聚类技术,自动对大量无类别的文档进行归类,把内容相近的文档归为一类,自动为该类生成标题和主题词并统计出文章数。例如对搜索的 “智能电网”相关的文本进行聚类分类。并展示了与问题主题关联的其他主体结果。如,“智能电网”的聚类结果如图:6所示,

  点击“分析”按钮后,展示对“智能电网”的语义统计分析结果动态展示,如图8,语义搜索引擎通过语义分析,关键词提取,获取问题主体就时间变化的可视化图谱。此功能是根据时间轴通过文本的语义分析给出一个时序性动态的主题展示结果。图8中,右侧为分析对象说明,左侧为结果动态展示。下方展示搜索引擎对“智能电网”从2007年到2015年相关信息的搜索挖掘基于语义分析并呈现动态可视化的知识推送。

  搜索引擎在问题语义理解的基础上通过聚类技术对与主题相关文章进行聚类并统计出文章数量。每篇文章通过实体抽取、关键词提取等标注出文章来源、版块、发布时间、作者及这篇文章的关键词。

  搜索引擎采用了实体抽取系统能够智能识别出文本中出现的人名、地名、机构名、媒体、作者及文章的主题关键词,这是对语言规律的深入理解和预测。而且其所提炼出的词语不需要在词典库中事先存在。另外,本功能统计出与实体相关的文章数量。图9中红框内相关人物聚类中显示与搜索问题相关的人物及文章数。

  相关概念词发现和相关任务的计算的结果来自于对10年报纸数据的学习。机器学习算法在不对迭代的对10年报纸的数据学习过程中,形成了词与词之间的关联,从而构建出了类似于本体库的词关系网(词网),通过给定词来计算相近关系和相邻关系的词和人物。

  搜索引擎不仅有知识管理及搜索功能,还能在后台进行统计分析,直接展示出分析结果,如图,搜索“智能电网”后“*网报信息来源地图“中的展示,由颜色深浅表示文章的相关来源城市出现的次数高低,蓝色约深表示相关文章来源城市出现频次高。以图10为例,“智能电网”相关文章在黑龙江、内蒙古、贵州、云南、广西、广东、海南、台湾等城市出现次数较少,说明这些城市还没有发展智能电网,可做电网人员的决策参考。

  “智能电网”相关文章统计分析展示如图11,左饼图表示“智能电网”相关文章的作者统计分析,右边饼图表示“智能电网”相关文章所在版块的统计分析。

  同时展示“智能电网”2008-2015年期间的话题变化曲线:话题变化曲线

  语义精准搜索引擎通过实体抽取功能,在数据库中搜索挖掘出其中实体,规定各实体之间的关系类别,通过交叉信息熵计算每个实体的关联关系,从而建立整理的实体关系展示图谱。如下图,搜索引擎抽取出电力行业的实体概念,通过规定核心概念、用项、代项、分项、属项、族项、参项这六项关系,采用一定算法建立实体之间的关系,从而建立整个实体的关系关联展示图。

官网:http://www.francofilm.com/ 鲁ICP备17020917号-1

网站地图|XML地图